ADVERTISEMENT
Nautilus Members enjoy an ad-free experience. or Join now .

Test Your Mathematical Sculpting Skills

Can you turn a two-dimensional fractal into a 3-D object? Break out your scissors and tape for a chance to win a 3-D printed sculpture.

Article Lead Image
Sign up for the free Nautilus newsletter:
science and culture for people who love beautiful writing.
NL – Article speedbump
Explore

The 20th-century mathematician Aleksandr Aleksandrov proved that for every two-dimensional polygon, there is one unique way of folding it to form a 3-D polyhedron. He also despaired that it appeared to be impossible to come up with a mathematical formula for finding the right folding lines, calling it “a problem whose general solution seems hopeless.”

Nautilus Members enjoy an ad-free experience. Log in or Join now .

Absent a mathematical formula, the next best thing is to use paper and tape to experiment with different ways of folding the shapes. That’s what Laura DeMarco and Kathryn Lindsey have done as they’ve tried to understand the properties of a new class of 3-D shapes that arise naturally from polynomial equations. “Kathryn and I spent hours cutting out examples and gluing them ourselves,” explained DeMarco in our new story covering their work.

Now Quanta invites you to construct these shapes. To do so, print out this PDF, which contains instructions and a template. Then try to find the right folding lines as you crease the two-dimensional polygon into a 3-D shape. Send us a picture of your work. The reader who comes closest to finding the correct folding lines will receive a 3-D printed version of one of these exciting new mathematical objects.

How to submit your entry:

ADVERTISEMENT
Nautilus Members enjoy an ad-free experience. Log in or Join now .

1) Post it as a comment on this Facebook post.

2) Tweet it to @QuantaMagazine.

3) Email it to quanta@simonsfoundation.org with the subject line “3-D folding entry.”

Entries will close on January 12 at 11:59pm EST. The winner will be announced on this post, on our Facebook page, and on Twitter.

ADVERTISEMENT
Nautilus Members enjoy an ad-free experience. Log in or Join now .


close-icon Enjoy unlimited Nautilus articles, ad-free, for less than $5/month. Join now

! There is not an active subscription associated with that email address.

Join to continue reading.

You’ve read your 2 free articles this month. Access unlimited ad-free stories, including this one, by becoming a Nautilus member — 25% off for a limited time during our seasonal sale.

! There is not an active subscription associated with that email address.

This is your last free article.

Don’t limit your curiosity. Access unlimited ad-free stories like this one, and support independent journalism, by becoming a Nautilus member — 25% off for a limited time during our seasonal sale.