Nautilus Members enjoy an ad-free experience. or Join now .

The Cell’s Backup Genetic Instructions

The cell is equipped with multiple redundancies in case something goes wrong. Researchers have begun to map these systems.

Article Lead Image
Explore

Most of us take for granted that the lights in our homes turn on at the flip of a switch. And the U.S. power grid has been designed to work in a way that inspires that confidence. (Most of the time, anyway.) If a substation gets knocked out somewhere between the power plant and your house, there’s often a backup pathway that can redirect the power and avoid a black out.

Most of us also take for granted that our genetic machinery will always do its work. Like the power grid, our genetic network often has more than one method of completing important tasks like repairing DNA and taking out the cellular garbage. If one gene becomes damaged or mutated, another can do the job.

Nautilus Members enjoy an ad-free experience. Log in or Join now .

Researchers are studying how pairs of genes in yeast back each other up when it comes to tasks like these. Yeast has 6,000 genes. Out of those, only 1,200 are essential: If any one of them fails to function correctly, the cell will die. That leaves nearly 5,000 other genes, though, and researchers don’t know what all of them do.

Brenda Andrews and Charles Boone, biologists at the University of Toronto, are trying to sort this out. They created 23 million strains of yeast, going through and knocking out a different pair of genes in each strain. And they found 550,000 pairs of genes that, when removed, caused the yeast to grow sick or die. So each gene and its partner must be doing a similar kind of job in the cell.

Nautilus Members enjoy an ad-free experience. Log in or Join now .

As Veronique Greenwood reports in her latest Quanta Magazine article, other researchers have called Andrews’ and Boone’s work “breathtaking” and “magisterial.” For a modest organism like yeast, that might seem like pretty high praise. But yeast is also a model organism; many scientists study it because its genome has a lot in common with human DNA. This experiment may help researchers figure out how mutations in multiple genes lead to debilitating human illnesses.  

For more on this story, check out “Giant Genetic Map Shows Life’s Hidden Links” on QuantaMagazine.org.

Lead imag: Natalia Romay/Flickr

close-icon Enjoy unlimited Nautilus articles, ad-free, for as little as $4.92/month. Join now

! There is not an active subscription associated with that email address.

Join to continue reading.

Access unlimited ad-free articles, including this one, by becoming a Nautilus member. Enjoy bonus content, exclusive products and events, and more — all while supporting independent journalism.

! There is not an active subscription associated with that email address.

This is your last free article.

Don’t limit your curiosity. Access unlimited ad-free stories like this one, and support independent journalism, by becoming a Nautilus member.