Facts So Romantic

Dr. Frankenstein Needs His Own Hippocratic Oath

Illustration by Diego Patino/SciAm/FSG

In the next war, instead of a soldier going on a reconnaissance mission into enemy territory, consider this possibility: a cloud of “micro air vehicles,” flying cyborgs, with built-in cameras and microphones, that could be guided by remote control. What military commander wouldn’t want that?

DARPA, the research wing of the Department of Defense, has been on the case. A decade ago, they experimented with building synthetic drones. The Nano Hummingbird can stay aloft for eleven minutes; the DelFry Micro for just three. Then they realized that a far better type of flying machine already existed. In addition to being able to cover long distances while economizing energy, insects have a simple nervous system that was relatively easy to harness.

Scientists at the University of California Berkeley have discovered how to stimulate a beetle’s brain to make it start and stop flying. They poked a hole in the exoskeleton, threading in microscopically thin steel wire. A package of electronics mounted with beeswax on the beetle’s back carries the camera. When electricity is sent into the beetle’s optic lobe, the bug took flight. The lab experiment was a success.

We don’t want shampoo being rubbed in Snuffy’s eyes to test the new no-tear formula. But if Snuffy were a pig, the majority of us are in favor of harvesting its organs for medical uses.

The vignette appears midway through Frankenstein’s Cat, Emily Anthes’ fascinating book about our latest methods of transforming animal bodies. While the technology she describes is new, humans have been altering animals, in a sense, for hundreds of thousands of years. The first animal we started tailoring may have been ourselves, when a distant ancestor dried an animal skin and managed to wrap it around her torso such that it could hold a baby securely (as described in “We Built These Bodies” from the premier issue of Nautilus). This saved a lot of energy, freed up her arms to perform other tasks, and changed the course of our evolution, allowing babies’ brains to develop more outside the womb. With the advent of agriculture, humans became much more sophisticated about breeding animals and crossing varieties of plants. Shaping the living things around us emerged as a defining feature of our species. Now transgenic technology—tinkering more directly with an organism’s genome—is poised to again transform the bodies of animals around us. Yet our society is far from having clear conclusions or policies on what modifications we should allow ethically.

We don’t want shampoo being rubbed in Snuffy’s eyes to test the new no-tear formula, but if Snuffy were a pig whose organs could be genetically modified to assimilate easily into human tissue, polls say the majority of us are in favor. We nod our heads when Peter Singer calls the prioritization of human needs “speciesism,” but now what about those new pig lungs for your nephew with cystic fibrosis?

A case in point concerns two scientists from UC Davis who have bred transgenic goats that produce higher levels of lysozyme in their milk, a protein that aids in digestion, and could help the 2 million children who die annually around the world from diarrheal disease. Farming animals for pharmaceutical purposes—known as “pharming”—holds much promise for medical therapies. Yet the FDA has been slow to approve. Meanwhile the 150 goats whose mammary glands are bursting with what might be liquid gold are at pasture.

SciAm/FSG. Book Jacket Illustration: Diego Patino

Not only do we struggle with whether to sanction the medical use of transgenic animals, we also need to rule on on whether to permit more fanciful tinkering. For instance, the process of easing the pain of losing a non-human member of the family is taking a new turn. Commercial cloning companies offer to clone Fluffy for about $100,000. The Korean doctor Hwang Woo-Suk needed more than 1,000 dogs before succeeding with the pup clone Snuppy in 2005. The technology will undoubtedly bring that number down, but are we willing to allow the “use” and destruction of countless other animals, to get an identical twin of Fido? For some, it’s a professional investment. A cowboy who’s worked well with a bull might not want to learn how to handle a new bovine partner every few years. Will a big scandal of the next decade involve the shady provenance of cloned animals?

But all of this is the selfish side of animal biotech. Anthes points out toward the end of the book that evolution has made us stewards of the other animals, like how Dr. Frankenstein realized that he had a great responsibility to treat the monster humanely. In addition to thinking what’s in it for us, we should use the technology to help other species. A heartwarming chapter is devoted to the dolphin Winter, whose injured tail was replaced with a prosthetic one. Anthes dreams of a time when racetrack horses can receive replacement bionic legs instead of being euthanized, when we can insert “bio-thermo” chips in farm animals to detect early sign of disease outbreak, and other ways that we can take better care of life—not just the human variety.

Yet for now, we are in flux, with legislation regulating the animal biotech industry highly inconsistent. Anthes eloquently explores the arguments framing the debate. And perhaps there’s no better indicator of how the future might shake out than the recent past. The recent obituaries of British physiologist Robert Edwards, who pioneered in vitro fertilization in 1978, remind us of a time when assisted reproductive technology stirred fear in the public. The Church heaped abuse on him then. Human rights groups were wary of making life “artificially.” Thirty-five years later, what’s most remarkable is how standard it’s become.

 

 

1 Comment - Join the Discussion